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THE IONIZATION EQUILIBRIUM OF OPTICALLY THICK
ARGON Z-PINCH PLASMAS FOR

ELECTRON TEMPERATURES BETWEEN 25 AND 65 eV

I. Introduction

.1,2

Due to some recent successful experiments at Livermore, ,2 which were

preceded by a host of theoretical calculations,3 -11 considerable interest

now centers upon neon-like ions in plasmas as very promising for

achievement of population inversions leading to lasing in the extreme

ultraviolet to x-ray regions of the spectrum. Although the first

successful demonstrations used frequency-doubled neodymium laser light at

0.53 m as a plasma driver, use of Z-pinch plasmas coupled to large pulsed

power generators as a lasing medium is also highly attractive due to the

large gain lengths (up to 4 cm) and immense energies (-1 MJ) available to

couple to the plasma. The Gamble-II device at NRL, while of relatively

modest energy, has proven to be a very efficient producer of K-shell

radiation from neon plasmas1 2'1 3. The use of fast plasma opening

switches1 4 to reduce pulse risetimes has produced more orderly pinches with

instabilities considerably less pronounced than those previously

observed1 5. These results suggest that Gamble-II would be an excellent

device to test lasing concepts on a Z-pinch. Argon, stripped to the neon-

like stage, is a prime candidate for lasing given both the available

machine energy and expectation of high quality pinches. It is the purpose

of this Memorandum Report to investigate the plasma conditions

(temperature, density, size) which will optimize the production of the

neon-like stage and also the pumping of the upper lasing 3P manifold of J-

* sublevels. We also identify and clarify the physical mechanisms which are

responsible for the functional behavior of the ionization balance and

pumping of the 3P levels.

Manuscript approved April 25, 1985.
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II. Description of the Atomic Model and Radiation Transport

The atomic model consists of all ground states of argon with the

following excited states in the sodium-like, neon-like, and fluorine-like

ions:

" State Statistical Weight Energy Above Ground (eV)

m2
Ar VIII 3p2P 6 17.695

(sodium-like) 3d2D 10 41.219

4s2S 2 71.377
4p2p 6 77.986

4d2D 10 86.443

4f2F 14 88.841

[n-5] 50 103.20

Ar IX [2p 53s] 12 252.16

(neon-like) [2p 53p] 36 270.18

[2p 53d] 60 293.76

[2s2p63s] 4 329.43

[2s2p6 3p] 12 346.82

[2p 5 n-4] 192 349.81

[2s2p6 3d] 20 370.19

Ar X 2s2p6 2S 2 75.734

(flourine-like) [2p 4 3s] 30 283.86

[2p 43p] 90 301.96

[2p4 3d] 150 324.69

[2s2p53s] 24 353.97

[2s2p5 3p] 72 371.25

[2s2p 53d] 120 393.44

[2p 4 n-4] 480 394.20

[2s2p5 n-4] 384 435.00

The states enclosed in square brackets [ ] are composites of several states

with similar energy.

2
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The rate table associated with this model includes:

1. Photoionization rates from each ground state and each excited state.

These rates were calculated using the hydrogenic approximation with Karzas
16

and Latter Gaunt factors, corrected for equivalent electrons.

2. Collisional ionization from each ground and excited state to the ground

* state above. These rates were calculated using the exchange classical

impact parameter technique.1

3. Dielectronic recombination rates from all ground states to the adjacent

ground state. These rates include (implicitly) the effect of the excited

states18 .

*4. The Einstein A coefficients were calculated by Cowan's19 code with

appropriate averages for composite levels.

5. Collisional excitation rates for dipole allowed transitions were
m20

calculated in the semiclassical impact parameter approximation20. For

transitions with no dipole allowed component the collisional excitation

rates were calculated with a distorted wave2 code.

6. Detail balance was used to obtain the radiative recombination rates

.- from the photoionization rates, the 3-body recombination rates from the

collisional ionization rates, and the collisional deexcitation rates from

the collisional excitation rates.

Radiation transport is calculated by a cell-to-cell photon coupling

technique using a matrix C for each transition which is the probability

that a line photon emitted in cell I is absorbed in cell J. Details of the

technique have been given previously.2 2'2 3  The steady-state solution for

the state and level populations, consistent with the radiation field, is

" obtained by an iteration technique.
24
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III. Results

Two argon ion densities (3x1018 cm-3 and 6x10 19 cm- 3) have been chosen

for the calculations. These densities represent the approximate lower and

upper limits of those achieved in imploding neon gas puff experiments on

the NRL Gamble-II generator. The 25-65 eV temperature regime is chosen to

examine the behavior of the neon-like argon stage. The results of our

calculations are presented in Figs. 1-7. In each case the ground state

ionic fraction for the neon-, flourine-, and sodium-like stages is shown as

a function of electron temperature. The total ion density and assumed

plasma size differ from figure to figure. In Figs. 1-4 , an ion density of

6x10 19 cm-3 is assumed, and in the remainder of the figures the ion density

used was 3xi018 cm- 3. For each chosen ion density, cylindrical plasma

diameters of 1.8 mm and 0.5 mm were used, and a calculation was also

performed in which all lines were assumed optically thin (equivalent to the

zero-size limit). The objectives were to approximate the experimental

conditions, expected with argon gas-puff implosions on Gamble II, and,

through use of the optically thin calculation, to gauge the effects of

radiative pumping on ionization.

Figs. 1 and 2 present the ionization curves for ion density 6x10 1 9

cm 3 and cylindrical diameter 1.8 mm. The only difference is that, for

Fig. 1, no sodium-like excited states were included in the model. Only a

minor effect on the neon-like stage distribution occurs, but note that the

*- sodium-like stage persists at higher temperatures when the calculation

excludes excited states for the sodium-like stage. This is because a

significant amount of ionization occurs from the excited states, and

excluding them from the model inevitably results in a less ionized

plasma. When the excited states are included, the flourine-like stage

becomes substantially more prevalent, reflecting the extra ionization.

These effects have also been previously noted for K-shell plasmas.
2 5

Figures 2,3, and 4 display the effects of line opacity on argon plasma

ionization, for a fixed total argon ion density of 6xi019 cm 3. As the

assumed plasma size decreases from 1 .8 mm to 0.5 mm (Fig. 2 compared to

Fig. 3), little effect is noted. This is due to the fact that the optical

depths of the principal resonance lines are already so high (102_103) that

4
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the radiative pumping rate is saturated by collisional destruction of the

line photons after a few scatterings in the lines. Therefore, since the

line pumping does not change, the ionization does not change. Comparison

of Figs. 5 and 6 - where the ion density is 3x1018 cm- 3 - reveals this same

lack of change at lower ion density. However, when the plasma is assumed

optically thin in all the lines, substantial reduction of the ionization is

observed. This is seen specifically by comparing Fig. 4 to Fig. 3 and Fig.

7 to Fig. 6. When there is no radiative pumping of the excited levels,

there is less ionization from those levels and, therefore, a less highly

ionized plasma. Experimental achievement of an optically thin argon plasma

would require a characteristic size of a few microns - currently

unrealizable with a Z-pinch. The optically thin plasmas also exhibit a

broader distribution of the neon-like stage. This is a manifestation of
the relative lack of excited state populations in these cases, allowing the

characteristic "closed shell" properties of the neon-like ground state to

produce the expected broad distribution closer to that seen in the coronal

limit. 2 6

Further insight into this last point is obtained by comparing Fig. 4

and Fig. 7. Both curves reflect optically thin calculations, the only

difference being the ion density. At the lower ion density of Fig. 7, an

extremely broad peak in the neon-like distribution is seen, similar to that

obtained in the coronal limit by Shull and Van Steenberg 2 6 (also plotted)

but at lower temperatures than their results. Figure 4 reveals that at

higher densities the peak is narrowed even though the calculation still

assumes zero optical depth at all frequencies. The reason for this

difference is that excited states are populated collisionally as well as

radiatively. Even though no radiative excitations occur in those

calculations, the increased collisional population of the excited states at

higher ion density removes some of the "closed shell" property from the

neon-like stage, resulting in more ionization (from the excited states) and

therefore a narrower peak further removed from the coronal limit than at

the lower ion density of 3xiO18 cm 3 .

Finally, we address the implications of these results for the

achievement of 3p-3s lasing in neon-like Ar IX. At first it would seem

that optimum plasma conditions would lie where the neon-like stage

5



maximizes, i.e. at Te - 35-45 eV. Actually, the optimum temperature for

3P-3s lasing is in the 50-55 eV range. Figure 8 illustrates the reason for

this difference. In this figure is plotted the fraction of all particles

whose energies lie above a certain threshold for a Maxwellian

distribution. For Ar IX, the 3P levels are approximately 270 eV above the

ground state. At Te - 40 eV, only- 0.3% of the electrons are capable of

exciting these levels. However, at 55 eV '- 2% of the electrons have

- sufficient energy to excite the upper lasing 3P levels. This more than

compensates for the reduction in neon-like ground state population. Our

-] . calculations indicate that the flourine-like resonance line complex,

2s22p5 - 2s22p43d at 38.5A will emit with about the same intensity as the

neon-like resonance line complex 2p6-2p53d at 42A when optimal pumping

conditions are achieved for the neon-like species.

The present model does not contain enough detail in the neon-like

excited state manifold to extract detailed gain behavior, and such

calculations are reserved for a future report. The ionization balance

calculations, however, are affected little by brea'ing composite levels

into J-sublevels for more detailed gain calculations.
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1.0
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No
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wZ

Z I. NI =6 x 1019 cm- 3
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,2Z
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Fig. 1. The ground state ionic fractions for sodium-like, neon-like, and

flourine-like argon are plotted against electron temperature for a

total argon ion density of 6x1019 cm- 3 and cylindrical plasma

diameter of 1.8 mm. No sodium-like excited states are included in

this calculation.
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_ Fig. 2. As in Fig. 1, except that the sodium-like excited states described

" in Section II are included in the calculation.

-. '. . .

, -. .°
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*Fig. 3. As in Fig. 2, except that the plasma diameter is assumed to be

0.5 mm.
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Fig. 4. As in Figs. 2 and 3, except that the plasma is assumed optically
thin (zero size limit).
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* Fig. 5. The ground state ionic fractions for sodium-like, neon-like, and

flourine-like argon are plotted against electron temperature for a

total argon ion density of 3 x 10 18 cm-3 and a cylindrical plasma

diameter of 1.8 mm.
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*Fig. 6. As in Fig. 5, except that the plasma diameter is assumed to be

0.5 mm.
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Fig. 7. As in Figs. 5 and 6except that the plasma is assumed to be
* optically thin (zero size limit). The coronal equilibrum results

of Ref. 26 for neon-like argon are also shown.
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